Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1363078, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633758

RESUMEN

[This corrects the article DOI: 10.3389/fendo.2023.1196293.].

2.
Front Endocrinol (Lausanne) ; 14: 1196293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293508

RESUMEN

Background: Type 2 diabetes mellitus (T2DM) is a chronic endocrine metabolic disease caused by insulin dysregulation. Studies have shown that aging-related oxidative stress (as "oxidative aging") play a critical role in the onset and progression of T2DM, by leading to an energy metabolism imbalance. However, the precise mechanisms through which oxidative aging lead to T2DM are yet to be fully comprehended. Thus, it is urgent to integrate the underlying mechanisms between oxidative aging and T2DM, where meaningful prediction models based on relative profiles are needed. Methods: First, machine learning was used to build the aging model and disease model. Next, an integrated oxidative aging model was employed to identify crucial oxidative aging risk factors. Finally, a series of bioinformatic analyses (including network, enrichment, sensitivity, and pan-cancer analyses) were used to explore potential mechanisms underlying oxidative aging and T2DM. Results: The study revealed a close relationship between oxidative aging and T2DM. Our results indicate that nutritional metabolism, inflammation response, mitochondrial function, and protein homeostasis are key factors involved in the interplay between oxidative aging and T2DM, even indicating key indices across different cancer types. Therefore, various risk factors in T2DM were integrated, and the theories of oxi-inflamm-aging and cellular senescence were also confirmed. Conclusion: In sum, our study successfully integrated the underlying mechanisms linking oxidative aging and T2DM through a series of computational methodologies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Envejecimiento/metabolismo , Factores de Riesgo , Estrés Oxidativo , Oxidación-Reducción
3.
Science ; 370(6513): 227-231, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33033220

RESUMEN

Stem cells in plants constantly supply daughter cells to form new organs and are expected to safeguard the integrity of the cells from biological invasion. Here, we show how stem cells of the Arabidopsis shoot apical meristem and their nascent daughter cells suppress infection by cucumber mosaic virus (CMV). The stem cell regulator WUSCHEL responds to CMV infection and represses virus accumulation in the meristem central and peripheral zones. WUSCHEL inhibits viral protein synthesis by repressing the expression of plant S-adenosyl-l-methionine-dependent methyltransferases, which are involved in ribosomal RNA processing and ribosome stability. Our results reveal a conserved strategy in plants to protect stem cells against viral intrusion and provide a molecular basis for WUSCHEL-mediated broad-spectrum innate antiviral immunity in plants.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/inmunología , Arabidopsis/virología , Cucumovirus , Proteínas de Homeodominio/fisiología , Inmunidad Innata , Enfermedades de las Plantas/virología , Inmunidad de la Planta , Proteínas de Arabidopsis/genética , Proteínas de Homeodominio/genética , Meristema/citología , Meristema/inmunología , Meristema/virología , Metiltransferasas/metabolismo , ARN Ribosómico/metabolismo , Células Madre/inmunología , Células Madre/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...